Potentiation of a voltage-gated proton current in acidosis-induced swelling of rat microglia.
نویسندگان
چکیده
Microglia are equipped with a strong proton (H(+)) extrusion pathway, a voltage-gated H(+) channel, probably to compensate for the large amount of H(+) generated during phagocytosis; however, little is known about how this channel is regulated in pathological states. Because neural damage is often associated with intracellular and extracellular acidosis, we examined the regulatory mechanisms of the H(+) current of rat spinal microglia in acidic environments. More than 90% of round/amoeboid microglia expressed the H(+) current, which was characterized by slow activation kinetics, dependencies on both intracellular and extracellular pH, and blockage by Zn(2+). Extracellular lactoacidosis, pH 6.8, induced intracellular acidification and cell swelling. Cell swelling was also induced by intracellular dialysis with acidic pipette solutions, pH 5.5-6.8, at normal extracellular pH 7.3 in the presence of Na(+). The H(+) currents were increased in association with cell swelling as shown by shifts of the half-activation voltage to more negative potentials and by acceleration of the activation kinetics. The acidosis-induced cell swelling and the accompanying potentiation of the H(+) current required nonhydrolytic actions of intracellular ATP and were inhibited by agents affecting actin filaments (phalloidin and cytochalasin D). The H(+) current was also potentiated by swelling caused by hypotonic stress. These findings suggest that the H(+) channel of microglia can be potentiated via cell swelling induced by intracellular acidification. This potentiation might operate as a negative feedback mechanism to protect microglia from cytotoxic acidification and hence acidosis-induced swelling in pathological states of the CNS.
منابع مشابه
An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملAMPA-kainate subtypes of glutamate receptor in rat cerebral microglia.
Microglial cells were isolated from rat cerebral cortex, and kainate (KA)-induced inward current was measured at a holding potential of -40 or -60 mV. 6-Cyano-7-nitroquinoxaline-2, 3-dione-sensitive KA-induced currents increased with increasing KA concentration. The half-activation concentration and Hill coefficient were 3.3 x 10(-4) M and 1.4, respectively. Although glutamate (Glu) and AMPA-in...
متن کاملRole of adenosine receptors and protein phosphatases in the reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices
The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes (PS) was studied in the hippocampal CA1 in vitro. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minute...
متن کاملRole of adenosine receptors and protein phosphatases in the reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices
The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes (PS) was studied in the hippocampal CA1 in vitro. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minute...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 19 شماره
صفحات -
تاریخ انتشار 2000